O21	0.3955 (2)	0.8576 (2)	0.5025(1)	0.0892 (5)
022	0.5640(2)	0.6102 (2)	0.6759(1)	0.0714 (6)
023	0.5171 (2)	0.4774 (2)	0.7759(1)	0.0664 (5)
024	0.0894 (3)	0.8146 (3)	0.4658 (2)	0.1241 (8)
025	0.2791 (2)	1.0039 (2)	0.6484(1)	0.0528 (4)
026	0.4637 (2)	1.0305 (2)	0.5795 (2)	0.0889 (6)
N21	0.2633 (2)	0.5843 (2)	0.5801 (2)	0.0519 (5)
N22	0.1231 (3)	0.5551 (2)	0.5586(2)	0.0722 (8)
N23	0.0985 (3)	0.4877 (3)	0.6253 (2)	0.0762 (8)
C21	0.3578 (4)	0.9745 (3)	0.5145 (2)	0.0822 (9)
C22	0.2237 (3)	0.9722 (3)	0.5556(2)	0.0600 (6)
C23	0.1799 (3)	0.8439 (3)	0.5504 (2)	0.0564 (6)
C24	0.3245 (3)	0.7867 (2)	0.5568 (2)	0.0467 (5)
C25	0.3188 (3)	0.6627 (3)	0.5200(2)	0.0580 (6)
C26	0.2215 (3)	0.4731 (2)	0.6882(2)	0.0584 (6)
C27	0.3290 (2)	0.5343 (2)	0.6613(2)	0.0467 (5)
C28	0.4832 (2)	0.5466 (2)	0.7040(2)	0.0490 (6)
C29	0.6671 (3)	0.4818 (4)	0.8265 (2)	0.083(1)
C210	0.6817 (4)	0.3992 (6)	0.9038 (3)	0.119(1)
C211	0.3629 (5)	1.2008 (4)	0.6356(3)	0.104(1)
C212	0.4030 (3)	1.0738 (3)	0.6519(2)	0.0621 (8)
C213	0.5059 (4)	1.0528 (5)	0.7431(3)	0.112(1)

Table 2. Selected geometric parameters (Å, °)

011-C11	1.406 (4)	O21-C21	1.404 (5
011-C14	1.435 (3)	O21-C24	1.417 (3
014—C13	1.414 (3)	O24—C23	1.402 (4
N11—N12	1.338 (3)	N21—N22	1.340 (4
N11-C15	1.471 (4)	N21-C25	1.447 (4
N11—C17	1.355 (3)	N21—C27	1.360 (3
N12—N13	1.312 (4)	N22—N23	1.320 (4
N13-C16	1.343 (4)	N23—C26	1.337 (4
C11C12	1.540 (4)	C21—C22	1.532 (6
C12C13	1.519 (4)	C22-C23	1.521 (5
C13-C14	1.524 (4)	C23—C24	1.505 (4
C14—C15	1.517 (4)	C24—C25	1.516 (4
C16—C17	1.370 (4)	C26—C27	1.369 (4
C11-011-C14	107.1 (2)	C21-O21-C24	107.8 (2
N12N11C15	118.0(2)	N22-N21-C25	119.0 (3
N12—N11—C17	110.4 (2)	N22—N21—C27	110.1 (3
C15—N11—C17	131.5 (2)	C25—N21—C27	130.9 (2
N11—N12—N13	107.6(2)	N21—N22—N23	107.2 (2
N12N13C16	108.9 (2)	N22—N23—C26	109.3 (3
011-C11-C12	107.3 (2)	O21-C21-C22	107.0 (3
C11-C12-C13	103.4 (2)	C21-C22-C23	103.8 (3
O14—C13—C12	112.1 (2)	O24—C23—C22	112.4 (3
014—C13—C14	112.8 (2)	O24—C23—C24	108.7 (3
C12—C13—C14	101.1 (2)	C22—C23—C24	100.4 (3
OI1-C14-C13	103.1 (2)	O21—C24—C23	104.9 (2
011—C14—C15	109.9 (2)	O21—C24—C25	108.2 (2
C13-C14-C15	113.4 (2)	C23-C24-C25	115.1 (3
N11-C15-C14	114.3 (2)	N21—C25—C24	110.1 (2
N13-C16-C17	108.9 (3)	N23-C26-C27	108.8 (3
N11-C17-C16	104.3 (2)	N21C27C26	104.5 (2

Table 3. Hydrogen-bonding geometry (Å, °)

...

D — $H \cdot \cdot \cdot A$	D—H	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	DH···A
014—H119· · · N13 ⁱ	0.83 (6)	2.19 (6)	3.013 (3)	175 (5)
O24—H219· · · N23 ⁱⁱ	0.84 (5)	1.99 (5)	2.806 (3)	165 (4)
Symmetry codes: (i) $1 - x, y - \frac{1}{2}, 2 - z$; (ii) $-x, \frac{1}{2} + y, 1 - z$.				

All H atoms, except those attached to O atoms, were fixed at ideal positions (C-H distances set at 0.95 Å), with common isotropic displacement parameters fixed at $1.3B_{eq}$ of the atoms to which they are attached. From the systematic absences of 0k0 and from subsequent least-squares refinement, the space group was determined to be $P2_1$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: MolEN. Program(s) used to refine structure: MolEN. Molecular graphics: MolEN. Software used to prepare material for publication: MolEN.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

This study was supported with funds from the NIH to JVS.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1203). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft. The Netherlands.
- Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Norris, P., Horton, D. & Levine, B. R. (1996). Heterocycles. In the press.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1997). C53, 122-124

A Polymorph of Bis(2-nitrophenyl) Trisulfide

PHILIP J. COX^{*a*} AND JAMES L. WARDELL^{*b*}

^aSchool of Pharmacy, The Robert Gordon University, Schoolhill, Aberdeen AB10 1FR, Scotland, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland. E-mail: paspjc@pharmacy. rgu.ac.uk

(Received 13 September 1996; accepted 15 October 1996)

Abstract

Unlike the triclinic form, a molecular twofold axis in the orthorhombic form of bis(2-nitrophenyl) trisulfide, $C_{12}H_8N_2O_4S_3$, corresponds with the crystallographic symmetry.

Comment

A crystallographic study of the triclinic form of bis(2nitrophenyl) trisulfide, (I), including details of its nonbonded $S \cdots O$ interactions has been reported previously (Howie & Wardell, 1996).

In the triclinic form, the molecular twofold axis is not related to the crystallographic symmetry. The present study of the orthorhombic form shows the molecular twofold axis passing through the central S2 atom, with symmetry-related atoms generated by the operation (1 - x, 1 - y, z). This results in an angle of $67.8(1)^{\circ}$ between the normals of the best planes through the two aryl rings, whereas in the triclinic form, this angle is 113.1 (5)°. Short intermolecular $S1 \cdots S2(x, y, y)$ z-1 and 1-x, 1-y, z-1) separations of 3.394(2) Å are also present in the orthorhombic form, but no $S \cdots S$ separations less than the sum of the van der Waals radii (3.60 Å; Bondi, 1964) are reported for the triclinic form. There is also a small difference in the S—S—S angles [110.57(9)° for orthorhombic and 106.35 (5)° for triclinic], but the remaining geometrical features are similar, for example, the intramolecular S···O separations are 2.585 (3) Å for the orthorhombic and 2.598(3) and 2.592(3) Å for the triclinic forms.

Each of the two molecules in the orthorhombic unit cell consists of two approximately linear sections, with an O1...S1—S2 angle of 173.75 (9)°. The S2...H3 intramolecular separation of 2.596 (4) Å is less than the sum of the corresponding van der Waals radii (3.00 Å; Bondi, 1964).

In the similar molecule diphenylsulfonyl sulfide, PhSO₂SSO₂Ph (Mathieson & Robertson, 1949), molecular and crystallographic symmetry also coincide. Other polymorphic forms relevant to this study include the

Fig. 1. The atomic arrangement in the molecule viewed approximately along the twofold axis passing through S2. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as spheres of arbitrary radii. [Symmetry code: (i) 1 - x, 1 - y, z.]

centrosymmetric and non-centrosymmetric forms of m-hydroxybenzoic acid (Gridunova et al., 1982), plus polymorphs of other nitro compounds such as 3,5-dinitrobenzoic acid (Prince, Fronczek & Gandour, 1991) and 4'-nitrosalicylanilide (Etter, Urbanczyk-Lipkowska, Ameli & Panunto, 1988).

Experimental

The orthorhombic form, isolated from a reaction mixture of PPh₃CCl, HSC₆H₄-o-NO₂ and Et₃N, was recrystallized from ethanol. HSC₆H₄-o-NO₂ was prepared from ClC₆H₄-o-NO₂ and NO₂S.

Crystal data

$C_{12}H_8N_2O_4S_3$	Mo $K\alpha$ radiation
$M_r = 340.38$	$\lambda = 0.71069 \text{ Å}$
Orthorhombic	Cell parameters from 250
P21212	reflections
a = 13.620(5) Å	$\theta = 2.25 - 24.96^{\circ}$
b = 12.088(5)Å	$\mu = 0.563 \text{ mm}^{-1}$
c = 4.115(2) Å	T = 150(2) K
$V = 677.5(5) \text{ Å}^3$	Lozenge
Z = 2	$0.32 \times 0.28 \times 0.16$ mm
$D_x = 1.669 \text{ Mg m}^{-3}$	Orange
D_m not measured	e

Data collection

Delft Instruments FAST	979 observed reflections
diffractometer	$[I > 2\sigma(I)]$
Area-detector scans	$R_{\rm int} = 0.0536$
Absorption correction:	$\theta_{\rm max} = 24.96^{\circ}$
none	$h = 0 \rightarrow 14$
1960 measured reflections	$k = -13 \rightarrow 13$
1058 independent reflections	$l = -4 \rightarrow 4$

Refinement

SI

S2 01 02

Ν

Cl

C2

C3

Refinement on F^2	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0478	$\Delta \rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1105$	Extinction correction: none
S = 1.089	Atomic scattering factors
1058 reflections	from International Tables
100 parameters	for Crystallography (1992
H atoms refined in riding	Vol. C, Tables 4.2.6.8 and
mode	6.1.1.4)
$w = 1/[\sigma^2(F_o^2) + (0.0466P)^2]$	Absolute configuration:
where $P = (F_o^2 + 2F_c^2)/3$	Flack (1983)
$(\Delta/\sigma)_{\rm max} = -0.001$	Flack parameter = 0.40 (17)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

x	у	z	U_{ea}
0.62235 (7)	0.47537 (8)	0.5825(2)	0.0215 (3)
1/2	1/2	0.8675 (3)	0.0244 (4)
0.7861 (2)	0.4399(2)	0.2828 (8)	0.0315 (8)
0.8334(2)	0.3042 (3)	-0.0190(9)	0.0436 (10)
0.7744 (2)	0.3462 (3)	0.1698 (9)	0.0246 (8)
0.6876(3)	0.2846(3)	0.2687 (10)	0.0184 (9)
0.6144 (3)	0.3333 (3)	0.4565 (9)	0.0180 (9)
0.5344 (3)	0.2670(3)	0.5411 (10)	0.0209 (9)

C4	0 5297 (3)	0 1579 (3)	0.4410(10)	0.0235 (10
C5	0.6030 (3)	0.1121 (3)	0.2534 (10)	0.0241 (10
C6	0.6817 (3)	0.1749 (3)	0.1667 (10)	0.0232 (10
				0

Table 2. Selected geometric parameters (Å, °)

\$1—C2	1.798 (4)	02—N	1.227 (5)	
S1-S2	2.0595 (14)	N—C1	1.455 (5)	
01N	1.235 (4)			
C2-S1-S2	104.69 (14)	C2-C1-N	121.4 (3)	
\$1 ¹ —\$2—\$1	110.57 (9)	C6C1N	116.7 (3)	
02-N-01	122.3 (3)	C1-C2-C3	117.1 (3)	
02-N-C1	119.8 (3)	C1-C2-S1	121.4 (3)	
01-N-C1	118.0 (3)	C3-C2-S1	121.6 (3)	
C2-C1-C6	121.9 (3)			
C2-S1-S2-S1	-79.58 (12)	01—N—C1—C6	-173.1 (3)	
02-N-C1-C2	-173.6(3)	S2—S1—C2—C1	-177.3 (3)	
01NC1C2	6.8 (5)	S2-S1-C2-C3	3.1 (4)	
02—N—C1—C6	6.5 (6)			
Symmetry code: (i) $1 - x$, $1 - y$, z.				

The unit cell was determined and the intensity data were collected on a Delft Instruments FAST diffractometer using the routines *ENDEX*, *REFINE* and *MADONL* in the *MADNES* software (Pflugrath & Messerschmidt, 1989), and processed using *ABSMAD* (Karaulov, 1992); detailed procedures are described by Darr, Drake, Hursthouse & Malik (1993). The S, O, N and C atoms were refined with anisotropic displacement parameters. The H atoms were allowed to ride on their attached C atoms and refined with isotropic displacement parameters.

Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1996).

The use of the EPSRC X-ray crystallographic service at the University of Wales, Cardiff, is gratefully acknowledged.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1114). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Darr, J. A., Drake, S. R., Hursthouse, M. B. & Malik, K. M. A. (1993). Inorg. Chem. 32, 5704–5708.
- Etter, M. C., Urbanczyk-Lipkowska, Z., Ameli, T. M. & Panunto, T. W. (1988). J. Crystallogr. Spectrosc. Res. 18, 491–507.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881,
- Gridunova, G. V., Furmanova, N. G., Struchkov, Yu. T., Ezhkova, Z. I., Grigor'eva, L. P. & Chayanov, B. A. (1982). *Kristallografiva*, 27, 267–272.
- Howie, R. A. & Wardell, J. L. (1996). Acta Cryst. C52, 1533-1534.
- Karaulov, A. I. (1992). ABSMAD. Program for FAST Data Processing. University of Wales, Cardiff, Wales.
- Mathieson, A. McL. & Robertson, J. M. (1949). J. Chem. Soc. pp. 724-733.
- Pflugrath, J. W. & Messerschmidt, A. (1989). *MADNES*. Version of 11 September, 1989. Distributed by Delft Instruments, Delft, The Netherlands.

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Prince, P., Fronczek, F. R. & Gandour, R. D. (1991). Acta Cryst. C47, 895–898.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Zsolnai, L. (1996). ZORTEP. An Interactive ORTEP Program. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 124-126

1-(4-Bromophenyl)-2-fluoroethanone (2,4-Dinitrophenyl)hydrazone Containing a Particularly Short Fluorine–Hydrogen Bond

SIMON J. BORWICK, JUDITH A. K. HOWARD, CHRISTIAN W. LEHMANN AND DAVID O'HAGAN

Department of Chemistry, University of Durham, South Road, Durham DH1 3LE, England. E-mail: c.w.lehmann@durham.ac.uk

(Received 26 September 1996; accepted 21 October 1996)

Abstract

The title compound, 4-bromophenyl fluoromethyl ketone (2,4-dinitrophenyl)hydrazone, $C_{14}H_{10}BrFN_4O_4$, contains a short F···H contact [2.02(3)Å] indicating an optimal stabilizing interaction.

Comment

We have a current interest (Howard, Hoy, O'Hagan & Smith, 1996) in exploring the ability of fluorine bound to carbon in organic compounds to act as a hydrogenbond acceptor. Systematic analyses of the Cambridge Structural Database (Allen *et al.*, 1987; Howard *et al.*, 1996; Shimoni & Glusker, 1994; Murray-Rust, Stallings, Monti, Preston & Glusker, 1983) reveal very few situations where such F atoms form short $F \cdots H$ contacts to acidic H atoms and in general these interactions are overridden by stronger hydrogen-bonding interactions between OH and NH groups.

In attempts to design a system which may exhibit fluorine-hydrogen bonding, we have prepared the dinitrophenylhydrazone of 4-bromo- α -fluoroacetophenone, (I). The fluoromethyl group was selected following our calculations (Howard *et al.*, 1996), which suggest that fluorine attached to an sp^3 carbon will act as a better hydrogen-bond acceptor than fluorine attached to an sp^2 carbon. The title compound is shown to possess a particularly short $F \cdots H$ contact of 2.02 (3) Å to the hydrogen of the hydrazone group, as part of a three-centred interaction with an O atom of the *ortho*nitro group. This length is close to the calculated equi-

Acta Crystallographica Section C ISSN 0108-2701 © 1997